Local Area Network (LAN) Switches support different Switching Methods. Important Switching Methods are store and forward, cut-through and fragment-free. Switching Methods determine how a switch receives, processes, and forwards a Layer 2 Ethernet frame.
Store and Forward Switching
In Store and Forward switching, Switch copies each complete Ethernet frame into the switch memory and computes a Cyclic Redundancy Check (CRC) for errors. If a Cyclic Redundancy Check (CRC) error is found, the Ethernet frame is dropped and if there is no Cyclic Redundancy Check (CRC) error, the switch forwards the Ethernet frame to the destination device. Store and Forward switching can cause delay in switching since Cyclic Redundancy Check (CRC) is calculated for each Ethernet frame.
Cut-through Switching
In cut-through switching, the switch copies into its memory only the destination MAC address (first 6 bytes of the frame) of the frame before making a switching decision. A switch operating in cut-through switching mode reduces delay because the switch starts to forward the Ethernet frame as soon as it reads the destination MAC address and determines the outgoing switch port. Problem related with cut-through switching is that the switch may forward bad frames.
Fragment-Free Switching
Fragment-free (runtless switching) switching is an advanced form of cut-through switching. The switches operating in cut-through switching read only up to the destination MAC address field in the Ethernet frame before making a switching decision. The switches operating in fragment-free switching read at least 64 bytes of the Ethernet frame before switching it to avoid forwarding Ethernet runt frames (Ethernet frames smaller than 64 bytes).
Store and Forward Switching
In Store and Forward switching, Switch copies each complete Ethernet frame into the switch memory and computes a Cyclic Redundancy Check (CRC) for errors. If a Cyclic Redundancy Check (CRC) error is found, the Ethernet frame is dropped and if there is no Cyclic Redundancy Check (CRC) error, the switch forwards the Ethernet frame to the destination device. Store and Forward switching can cause delay in switching since Cyclic Redundancy Check (CRC) is calculated for each Ethernet frame.
Cut-through Switching
In cut-through switching, the switch copies into its memory only the destination MAC address (first 6 bytes of the frame) of the frame before making a switching decision. A switch operating in cut-through switching mode reduces delay because the switch starts to forward the Ethernet frame as soon as it reads the destination MAC address and determines the outgoing switch port. Problem related with cut-through switching is that the switch may forward bad frames.
Fragment-Free Switching
Fragment-free (runtless switching) switching is an advanced form of cut-through switching. The switches operating in cut-through switching read only up to the destination MAC address field in the Ethernet frame before making a switching decision. The switches operating in fragment-free switching read at least 64 bytes of the Ethernet frame before switching it to avoid forwarding Ethernet runt frames (Ethernet frames smaller than 64 bytes).
No comments:
Post a Comment